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QUANTUM MECHANICAL STUDY OF MOLECULES
Electronic States of Diatomic Molecules
by Roop C. Sahni
SUMMARY

This paper, following a brief introduction, is divided into four
parts. Part I outlines the theory of the molecular orbital method for
the ground, ionized and excited states of molecules. Part I1 gives a
brief summary of the interaction integrals and their tabulation. Part III
outlines an automatic program designed for the computation of various
states of molecules. Part IV gives examples of the study of ground,
ionized and excited states of CO, BH and N2 molecules where the programs

of automatic computation and molecular integrals have been utilized.

TNTRODUCTION

Since molecules are built from two or more atoms, it is obvious
that an understanding of the electronic states of molecules must be
built upon a prior knowledge of the electronic states of atoms.

Just as each energy level of an atom corresponds to a certain
electronic configuration, similarly molecular spectra are analyzed into
levels, each of which is analogous to an electronic level in an atom.
With each electronic level 1s associated a group of neighboring levels
which are attributed to the quantized vibration of the molecule. Again
each vibration level has associated with it a group of levels due to the
quantized rotation of the molecule with the same electronic configuration
and the same energy vibration. Theory (ref. 1) shows that the electronic,
vibrational, and rotational levels may, to a first approximation, be
considered separately and their respective contributions to the energy

are to this approximation additive, thus:

E = Eelec. *+ Evib. + Erot.



Since the knowledge of electronic levels forms the basis for
understanding of spectra and the structure of molecules, we shall,
therefore, in this paper discuss the electronic levels (states or
wave functions) of molecules and will outline a procedure for their
automatic computation on the electronic machine.

This investigation was conducted at New York University under
the sponsorship and with the financial support of the National

Aeronautics and Space Administration.

SYMBOLS
\P total state function
1 single electron function
ei energy of the ith electron
vy the potential energy of the ith electron in the field of
nuclei alone
de volume element of jth electron for volume integration
#
Z summation over all values of j =1, 2 ... n except j =1
J
A laplacian operator
MO molecular orbitals
LCAO linear combination of atomic orbitals
F> permutation operator
;F+’ the complete many-electron Hamiltonian
I bare nuclear field Hamiltonian operator
J Coulomb operator
X exchange operator

o electron electron with ¢ spin

p electron electron with £ spin
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3w, 31tu, 3}:; 32; excited states of N

atomic orbitals
variable going from O to =

variable going from O to 1

auxiliary functions used in expressing overlap, Coulomb,

and hybrid integrals
auxiliary functions for expressing exchange integrals

orbital exponents or screening constants for ¥, ¥%',

and X" atomic orbitals, respectively
atoms

an atomic orbital
atomic orbital for ith electron of atom denoted by subscript

different atomic orbitals on atom denoted by subscript

distance between electrons 1 and 2

internuclear distance, atamic units

undetermined coefficients, a's
Hermitian conjugate of the vector a;

matrices defined by equations (40) and (41)

unit matrix

2

ionized states of N2

molecular orbitals of 5 symmetry for the ground state
of CO molecule

molecular orbitals of s« symmetry

molecular orbitals of ¢ symmetry of BH molecule



cls, 0 2s, 0 2p
g g g
> symuetry orbitals of N2 molecule

o, 18, qﬁa qﬁp
defined in Table VII

% 2p, 7,2p

Euep, Rgep

LCAO SCF MO Theory abbreviation for "Linear combination of atomic
orbitals self-consistent field molecular orbital

theory”

I - MOLECULAR ORBITAL THEORY
The One-Electron Approximation
The calculation of the electronic wave functions of atoms and
molecules with more than two electrons, is based on the Hartree Model
of the atom, which gives an approximate value of the total state

function \}y obtained by the product of n one-electron functions

¢'s. Thus
\P (v zseeex y 2 ) = g (xgyym) yp(egyamp) - g (ey2) (1)

Hartree (ref. 2) suggested on the basis of plausibility that each
one-electron function ¢ in equation (1) should satisfy a one-electron
Schrodinger equation, in which the potential includes a term that takes
into account the Coulomb field of the other electrons as well as the
field arising from nuclei. He chose this term as the classical electro-
static potential of the n-1 normalized charge distributions ]¢j|2e2.

Hence his equations for ¢1 are

, §.(r,) °

2 2 jra

:g\—z_ Ai¢i(rl) + vi(rl) + 2 e f"—'_rlz de llri(rl):ei\ki(rl)
3

(2)




where r, denotes the space co-ordimates (Xi’ Yo Zi) of the ith electron,
ei is the energy value of the ith electron,
Vs is the potential energy of the ith electron in the field of

nuclei alone,

de is the volume element of jth electron for volume integration,
’

5" is the summation over all values of j = 1, 2 ... n except when

Ay

Jd J=1,

2
:égr'éﬁ is the kinetic energy operator of the ith electrom.

Equations (2) have been further modified by Fock (ref. 3) so as to

include exchange terms, and are now known as Hartree-Fock equations

2 §.(r,) ©
:%_Aiwi(rl) + v(rl) + E e f %— aT, \lfi(rl)
3

¥(x,) ¥, (x,)
'Z et f ; 1?121 : Vi) = Xxij“’j“‘l) (3)
J J

in which )., = €, .
ii i

The general procedure for solving Hartree-Fock equations i1s one
of trial and error. One assumes a set of ¥'s, solves the equations
for the required €'s and ¥'s and compares the resulting ¥'s with the
assumed ones. Guided by this comparison a new set of ¥'s is chosen and
the procedure is repeated. This process is then continued until the
assumed and calculated Y's agree. This iterative method of solving

equations (3) is called the Hartree-Fock self-comsistent field method.



For atoms, the problem of solving Hartree-Fock equations is
greatly simplified by the central symmetry. For molecules because
of the absence of central symmetry the numerical solution of these
equations is a very difficult problem. This difficulty is overcome
by using the molecular orbital approximation, described in the next

section.

Molecular Orbital Approximation

The M O approximation is essentially an extension of the Bohr
theory of electron configurations from atoms to molecules. ZEach
electron is assigned to a one-electron wave function, or molecular
orbital, which is the quantum mechanical analogue of an electron orbit.
Molecular orbitals (MO) are generally built up as linear combinations
of atomic orbitals (LCAO).

The molecular orbital approximation, based on a single-determinantal
wave function for the ground state of molecules having doubly occupied
orbitals, has been applied to molecules, on the lines similar to
Hartree-Fock treatment for atoms, by a number of workers (refs. 4 to 6).
Lennard-Jones (ref. 7) has also considered a determinantal wave function
in which molecular orbitals ¢l, ¢2 ces ¢p are associated with two

electrons of opposite (@ and p) spins and ¢p+l’ ¢p+2 ces ¢p+q with only

one electron (of o or B spin). Such a wave function can be written

= (2p+a)! 12 N PP (Da(2). ... b (2p)p(2p) V_ . (2p+1)a(2p+l)
1 P p+l
P

/....¢p+q(2p+Q)B(2P+Q)

(4)



where F) runs over the (2p+q)! permutations of the (2p+q) variables
and (-1)p is the parity of the pth permutation. Considering all the
¥ functions as orthogonal, he has also deduced a set of differential
equations for their optimum forms. These equations for the paired

spins can be written

(H+J -K) ¢n = E ?m
where H, J and K are the bare-nuclear field Hamiltonian operator,
Coulomb operator and Exchange operator}reSPectively. EInn is defined

by
Emn=f5m(1_{_+g-§) ¥ ar

and the Coulomb operator Ji and the Exchange operator Ki are defined

by

Lt - ([Te 2 yem) w
and

B = ([T, & @y L)

so that they can be expressed as one-electron integrals involving the

operators J. and K..
=i ~1

Equations (5) do not define the orbitals uniquely so that the

motion of the electrons can be described with equal accuracy using

several types of orbitals. One possible type is the molecular orbital

(5)

(6)

(7



description which is defined by the condition that

E_ =0, nfn . (8)

From this definition it can be proved that each molecular orbital
belongs to one or the other of the irreducible representations of the
symuetry group of the molecule. This means that they cannot be local-

ized in a certain part of the molecule, but are spread throughout it.

Extended Molecular Orbital Equations
The wave function given in equation (4) is not the most general
form of a single determinant wave function. If the number of o electrons
(Nd) is not equal to the number of B electrons (NB), it can be shown
(refs. 8 and 9) that there is no a priori reason why any of the orbitals
containing ¢ electrons should be identical with any of the rest., In
the most general form we may introduce Nd + Nb molecular orbitals, all

of which may be varied independently in the Ritz variational process.

This wave function can be written as

\IJ = {(Na+NB)1} -1/2 z(_,)pP ‘lfl(l) a(1) ¥, (2) a(z)...drNa(Na)a(Na)
P

wNa+1 (w +1)p(N_+1) ...¢NG+NB (W) A | (9)

In addition to being more general than equation (4), the wave
equation (9) has the additional advantage of simplifying the variational
problem. By carrying out linear transformation within the determinant,

we may take the ¢ orbitals to be an orthogonal set; the same applies to



the B orbitals. However, there is no need for any of the o orbitals
to be orthogonal to any of the B orbitals, since the complete one-
electron functions are orthogonal on account of spin.

The total electronic energy for such a wave function is given by

- [P \Pdm (10)

where j}#—, the complete many electron Hamiltonian is

):+=zﬁi+z ;l— (11)

i>y

the formuls

Hi is the Hamiltonian operator for the ith electron in the field of
the nuclei alone.

For the wave function of equation (9) we have, therefore,

E = (Na+Ng)£|-l f Z (_1)PP ¢l(1)a(1)...)r+z (-1)1"P' tbl(l)a(l)...] aT
P P’
=f ﬁl(l)a(l)...l):ifz &3 P‘ q,l(l)oz(l)...] 4T (12)
o

Where9¥jﬁ totally symmetrical in all its variables. Most of the
permutations in equation (12) lead to vanishing terms on account of
orthogonality. The only ones that do not vanish are the identical
permutation and all single permutations of the same spin. These lead
to the following expression for the energy E

o4p

QL
_ 1 1
B - ) 3 _i. S Tig =3
i

i

(13)

i~ Q
1R
+
pr\/jtn

o >~]™
p—
=
'_J
<
[ ]
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Here Z and Z indicate summation over suffixes corresponding to

1 i
molecular orbitals "]’i that are occupied by ¢ and B electrons,reSpect—

o

ively. 2 is used for summation over all orbitals.,

1
If we are dealing with a close shell ground state in which the
two sets of orbitals are identical, the energy expression in equation -

(13) reduces to the usual form
= 2 H - X . L
E Z gt Z (2Jij ij) (14)
i i,

ICAQ Self-Consistent Field Orbitals
In the LCAO MO method all the electrons of the molecule are
represented by linear combinations of atomic orbitals.
¥, = za X (25)
i ip'p
P

where 1 specifies the MO's, ¥,

p specifies the atomic orbitals, x, and

aip specifies the undetermined coefficients, a's.

Equation (15) can be written in the matrix notation as

Vo=a, X (16)
The condition that the MO's be orthogonal then reduces to
oy arearss, -5, (a7)
14 -1 ==J iJ
where the elements of the overlap matrix S are defined by
s =8 =fix aT (18)
rd qp pa



and g._g._‘ is the Hermitian conjugate of the vector 8,
If we write the terms in the energy expression of equation (13) in

the matrix form

H =a*Ha,,
= g¥ = g%
gij = a7 iT.j g 7 &5 I gy (19)
..=a¥K.a =a%¥K a.,

and vary the coefficients a, by an amount Sii’ the resulting variation

in E is found to be

e e b ¢ a B B
- * * * ;
3E = zsii Ha, + z ZSgi Ejii ( Z z + Z z ) Sa¥ Ej a; + Complex Conjugate
i i 3 i i 3
o+B o B8
- * - * - * :
Z sal(H + Ja, z&ii Kaii 28&1 _I_{_aéi + Complex Conjugate (20)
i i :
where J, Iga, g‘? the total coulomb and exchange matrices are defined
as i
J = E: J,
= -
i

K& -

K.
—i

.e

»IMQ

B

kP - Z K. (21)
i

a, is subject to the orthonormality restriction in equation (17)
82{ s 8 +§"{ ] 82‘3‘ =0, (i, § in same set) (22)

Multiplying equation (22) by Lagrangian multipliers ;eji and adding to

equation (20) we obtain the minimization condition

11



o o B
Y e ((Bd-KNay - YSey ) + Y ser((E@ e -
. 4

J

Ji

> @
|t
L['SD
m

+ Complex Conjugate = 0 .

From equation (23) we conclude that the coefficients a; must satisfy
o 2

cither (H+J - K¥a, = Sa, €,.
S ! =323 i

[

Sayce

or (H+J - KPla, = s
S ! 3 i

Nl ™

according as Y. Dbe associated with o or p electrons. We can further
i
diagonalize the matrices e,ji by the orthonormel transformation of the

orbitals reducing equations (24) and (25) respectively to

(H+J-Kf)a(¥=€c.x5a

— - —_ =i d - =i
and

@E+T-8)° = Lsal |

— iy -— — 1 - —1

The elements of the matrices H, J and Ea Or B are defined by

H =f§ HX 4T
=pq p="q
B

Z i tifui z tl‘u1)ffx (1) % (2)_ X (l) X (2) aT dT2
i

tu

and KO‘ orp . E ( EO‘ TPa e j]x (1)Xt(2)— %y (2%, (1)aT az, .

Though equations (26) and (27) describe two straight forward eigen-

value problems, the calculation of the elements of matrix J, which is

12

(23)

(24)

(25)

(26)

(27)

(28a)

(28p)



common to both, involves the a; coefficients which are assumed for the

first cycle but for the subsequent cycles they have to be obtained from

the solution of both the eigen-value problems. The equations are, there-

fore, best solved by a cyclic process:

1. +to begin with, values of a, are assumed consistent with the ortho-
normality condition of equation (17),

2. these a; are used to calculate the matrices J, 59 and K?,

3. the determinants equation (29) of secular equations (26) and (27)
are solved for n lowest roots € and for their coefficients

p

o'
a. and a7,
-1 —1

5% - e8| = 0 ; | - e8] =o; (29)
F¥ and ¥ are defined by

o= B+l oK
e P - Ee3-8, (30)

4. +the new coefficients ég and gg, thus obtained, are used to calculate

matrices J, K%, K° and the process is repeated till self-consistency
is attained; that is, the coefficients 5? and EE obtained from the
nth cycle are in agreement with those obtained from the (n-l)th cycle,
within predetermined limits.

After the self-consistency is obtained, the eigenvectors a; of
the secular equations give the LCAO MO's and the eigen-values € the
vertical ionization potentials.,

We shall describe in the following section the computation of
atomic and molecular integrals required in the calculation of S, J

and K matrices.

13



IT - ATOMIC AND MOLECULAR INTEGRALS
Tables of Molecular Integrals

A variety of physical properties of molecules such as energies,
polarizabilities, susceptibilities, and transition moments can be cal-
culated by use of quantum mechanics from the knowledge of molecular wave
functions. The calculation of these functions by any of the standard
methods, such as valence bond or molecular orbital, involves the cal-
culation of molecular integrals which is extremely tedious and requires
considerable mathematical understanding., Until recently only approxi-
mate methods were used to evaluate these integrals; however, progress
has been made in the past few years in the evaluation of the basic inte-
grals. Numerical values of some of these integrals have been tabulated
by some investigators; (ref.10) however, the available values are not
sufficient to provide all the integrals required in the calculation of
molecular wave functions.

It has, therefore, been considered worth while to study a number of
these integrals and tabulate their wvalues. In carrying out these com-

putations a number of factors were considered and material tabulated for:

(1) Integrals which contain all the interaction integrals arising
in the calculation of the properties of diatomic molecules containing
electrons of 1ls, 2s, and Z2p atomic orbitals.

(2) Integrals or their auxiliary functions as functions of one or
two variables over wide ranges of internuclear distance.

(3) 1Integrals which are functions of more than two variables which
have been expressed as a linear combination of auxiliary functions of
two variables p and g. The values of r may range from O to 1, and
all the required values at suitable intervals are tabulated, while the

values of p may range from O to ». The upper limit of the values of

P is chosen to have integrals for values of the internuclear distance
even beyond the dissociation distance.

Tables which contain one-center one-electron and two-center two-electron

integrals have been prepared automatically on an electronic computer. The



monocenter integrals involving 1ls, 2s, and 2p atomic orbitals are
special cases of two-center integrals for p = O and can also be
obtained from these tables.

The tables of integrals are divided into four parts and will
appear in six volumes (refs. 11, 12 and 13)

Volume 1 (designated as Part I) contains two-center two-electron
and monocenter one-electron-integrals.

Volume 2 (designated as Part II) contains two-center two-electron
and monocenter two-electron Coulomb integrals.

Volumes 3,4 and 5 (designated as Parts III (a), III (b) and IITI (c)

CY6€

B (P4T) auxiliary functions of the

. Y&e Yde
contain CaB (P,T) C‘aB (P,T) and
hybrid integrals.

Volume 6 (designated at Part IV) contains some exchange integrals

and the auxiliary functions, W¥ and Gg, required for the computation of
exchange integrals.
A photographic copy from Table I (b) is included to acquaint the

readers with the type of information contained in each table.

Choice of Atomic Orbitals

For the Computation of the different types of integrals given below,
Slater-type atomic orbitals (AO's) were used for the computations. For

quantum numbers n=1 and 2 the normalized Slater AO's are (ref. 1k)

1s

(M3/ﬁ)l/26-ur

28 = (u5/3ﬂ)l/2re'ur

- (31)
2PZ cos @
2PX = (&S/K)l/are-p‘r R £ sin O sin @
Epy sin © cos @

15
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where the effective charge ¥ 1s arbitrary.

Types of Integrals
The following types of integrals or their auxiliary functions are

tabulated in Parts I, II, III, and IV (refs. 12 and 13). The notations

n
Xg., X;, Xg are used for the various atomic orbitals on atom a and,
similarly, the notations Xy, Xg, X; are used for the various atomic

orbitals on atom b.

Overlap integrals:

fxa(l)xb(l)dvl (32)
Nuclear-asttraction integrals:
J x, (1) (1/7,)x; (1)av, (33)
[ s)x @ar,

Potential-energy integrals:

fx.a(l)(l/ra)xb(l)dvl

[ marn (34)

Kinetic-energy integrals:

- 522 fxa(l) A xb(l)dvl (35)

Couwlomb integrals:

ffxa(l)x;(l) (l/rlg)xb(E)x_;(2)dvldv2 (36)



Hybrid integrals:

ffxa(”xz;(l)(1/1"12)X;(2)"b(2)dvld"2 (37)

Exchange integrals:
[ fa 0 (/e ) (2 (2avav, - (38)

ITI - PROGRAMS FOR COMPUTING WAVE FUNCTIONS

The programs which compute the atomic and molecular integrals for the
tables of integrals were later incorporated into a single program. This
program uses as input data the screening constants of the different atomic
orbitals and the internuclear distance R, and computes all of the required
integrals in a single run. The program also computes the matrices S and H
and arranges the coulomb and exchange integrals (Jij and Kij’ resPectively)
for multiplication with the coefficients -9 to generaﬁe the matrices 99 and
& . The program was then incorporated into two master programs A and B

described below for calculating LCAO MO's and their associated energies.

The two essential stages (ref. 15) in the calculation of the ICAO MO's
and their associated energies are the calculation of the matrices Eeiand
g?, and the solution of a related eigenvalue-eigenvector problem.

It was not found possible to construct a program, which could cover
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both these stages of computation in a single run, because of the limita-
tion of the available storage capacity of the computer. However, it was
found possible to construct two master programs, A and B, prepared in the
usual manner punched on I.B.M. cards, requiring less than the available
storage space of the machine. The program A was so constructed as to
carry out the following:

1. to normalize the vectors ii according to the equation

a; Sa. =3 (39)

J 1

2. to multiply a, with integrals Jij and Kij to give matrices {,59, and 5?

3. to evaluate matrices Epiand E? according to the equations

=
+
14

and

E+J -K = F

L. to punch out matrices E? and E? in the binary form on I.B.M. cards
which serve as the input data for program B.
The program B uses the matrices ¥ and S as the input data together

with a card which contains some instructions in the form of constants,

S (%0)

P (41)

which depend on the order of the matrices. The program solves the eigen-

vector equations

I
o

(Ea - ei.s_’)?'_i
and

(E? - ei§)§i

both for the LCAO coefficients and ei values in a single run by the

iteration-rotation process described in Appendices I and ITI .

(42a)

0 (42p)



The program B, at the end of every run, punches out the coefficients
§i and. €55 both in the decimal form, for comparison with the values of
the previous run, and also in the binary form. The a; coefficients,
punched out in the binary form, serve as the input data for the second
run of the program A. Program A in return punches out matrices Eq and
E? which are used as the input data for program B. This is continued
till the required self-consistency is obtained. In all about 15-20
cycles, requiring about 1/2 hour of computation on the machine, are gen-

erally needed for the self~consistent calculation of an electronic state

of a molecule.

The Scope and Use of the Program

The program for the calculation of molecular orbitals is naturally

divided into two parts:

(a) evaluation of the matrices Eg and E? from the molecular integrals

of Part II -

(b) calculation of the ILCAO MO's and their energy values.

The program for part A has been so constructed that it can be used
for the calculation of the matrices for the ground state as well as those
for the excited and ionic states. In fact, it can be used even for doubly
and triply ionized states of molecules; a card has been made in the pro-
gram with the necessary instructions punched out in certain locations,
which can be modified so as to exclude the contributions to the energy
value from those orbitals, which remain unoccupied in any state of the

molecule.
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Both the programs, A and B, are constructed, at the present state,
to cope with the Eg and E? matrices up to the order 10. This is due to
the fact that nearly every calculation in the molecular orbital theory
can be carried out with a matrix of the order less than 10, if group

representation is taken into consideration. However, if it becomes

necessary to use matrices of the order higher than 10, the programs can be

easlly modified.

The programs are also useful in the more accurate treatments of the
wave funétions of atoms and molecules; such as the configuration inter-
action, and the use of codetors (1linear combinations of determinants),

which involve the use of equations of the type
(E - el) 8; = 0
containing the unit matrix I. The equations (L43) are a special case

of equations (42), in which the diagonal elements of the overlap matrix

S are unity and the off-diagonal elements are zero.

IV - COMPUTATION OF WAVE FUNCTIONS "

The programs mentioned above have been applied to calculate the

electronic wave functions and some properties of the following molecules:

1. CO molecule (ground state)

2, BH molecule (ground state)

3 3 3 1,3¢- .
3. Tgs Ty Z:l and zu states of N, molecule (excited states)

2t 2t + : ons
4, B Zu and X Zg of l\T2 molecule (ionized states) o

The calculations are now being extended to the ground, excited and ionized

states of a number of other molecules and, at the same time, techniques

(43)



are being developed to improve these wave functions. It is hoped that
these calculations, a brief summary of which is given in the following
sections, will form the basis of further work in the field and its

application to other problems of molecular physics and spectroscopy.

THE STRUCTURE OF CARBCN MONOXIDE

The Molecular Orbitals of Carbon Monoxide

The most practical form of eXpression of molecular orbitals at
present is to use linear combinations of atomic orbitals. This method

is adopted here for carbon monoxide (see ref. 6), atomic orbitals of the
Slater type being used for carbon and oxygen, the only modification of
the original Slater functions being to form orthogonal functions from
the 1s and 2s orbitals. This ensures that all orbitals on the same
atom are orthogonal to each other. All the orbitals will be taken in
their normalized form. The convention to be adopted for the sign of the
2pz orbitals is to use the oxXygen nucleus as origin, to denote the 0OC
axis as the positive direction and to make the p-orbitals positive on
the side of increasing z. The atomic orbitals of oxygen and carbon are

distinguished by the suffixes o and c.

21



TABLE I.- MOLECULAR ORBITALS OF o SYMMETRY FOR
THE GROUND STATE OF CARBON MONOXIDE

| o | Ble | (BR)o | (R g hen,
uo o.1é7" 0.611;_ -0.1855 ;'o.‘76725— *-13;;3« _-11;.6})9 o
sO 0.7176| -0.4926 | -0.6065| 0.168 -20,011 | -19.695
to 0.675 | 0.270 0.231 | -0.227 -43.369
o 0.973 | -0.971 1.0 1.055 15.613

The two most tightly bound wmolecular orbitals are taken to be the
same as the atomic orbitals (ls)o and the (ls)c, their computed energies
(negative) being 562.76 eV and 308.53 eV. From the four atomic orbitals
of ¢ symmetry, viz. (25)0, (EPZ)O, (ES)C and (2px)c, four orthogonal
molecular orbitals can be constructed. Those that satisfy most nearly
the equations for the molecular orbitals and give self-consistent results
have the linear coefficients given in table I, the nomenclature being
that used by Mulliken.

It is instructive to examine the distribution of the three occupied
molecular orbitals, which are given in figs. 1, 2 and 3. The most tightly
bound one to, is concentrated mainly between the two nuclei where the poten-
tial field is strong. The energy of bonding is accordingly large. It is
evident from the contours of equal density, plotted in the figure, that
the greater field of the oxygen pulls the electron distribution towards it.
This represents a form of polarization, or induction. If the two nuclei
were equal, as in the nitrogen molecule, the distribution would be symmetrical
about the midplane. The asymmetry in the CO molecule produces a shift towards

the oxygen and at the same time there is a distortion of the pattern near
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Fi1G. 1.—(#0) bonding molecular orbital of CO. *

F1G. 2.—(s0) non-bonding molecular orbital of CO.

21

FiG. 3.—(uo) non-bonding molecular orbital of CO.

*Figures 1-6 reprinted with the permission of the Faraday Society.
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the oxygen nucleus corresponding to a contraction of the distributian;
there is a corresponding expansion of the distribution round the carbon
nucleus.

The next orbital in order of energy is the sO one and this is dis-
tributed mainly on the reverse side of the oxygen. This is like a local-
ized oxygen atomic orbital, made up of (25)0 and (2pz)o, directed away
from the carbon, though polarized to some extent towards 1t. This dis-
tribution, which puts a pair of electrons away from the carbon and so in
a region where the field is not so strong, is due to the powerful influence
of the exclusion principle, for the orbital must be orthogonal to the to
orbital. This important effect is illustrated also in the next orbital,
uo, which is mainly concentrated on the side of the ecarbon remote from the
oxygen, for it must be orthogonal to both to and so.

We thus see that when electrons are assigned in pairs to the o orbit-
als in accordance with the exclusion principle, they are distributed mainly
in three regions, viz. between the nuclei, on the outer side of the oxygen
and on the outer side of the carbon respectively.

There are two atomic orbitals each of 2px and 2py symmetry and from
them two molecular orbitals each of T and ﬁy symmetry are derived. Those
for n, are given in table II, and the coefficients for ﬂy are the same.

The bonding T molecular orbital is shown in fig. 4. The distribution is
seen to be mainly concentrated in the neighborhood of the oxygen nucleus
but with some extension of the pattern in the direction of the carbon. If,
as suggested by Mulliken, the electrons to be associated with each nucleus

are calculated from the squares of the coefficients given in table II,



allowing half the overlap contribution to each, the four electrons
assigned to the ﬂx and ﬁy orbitals may be regarded as distributed be-
tween the oxygen and the carbon in the ratio of approximately three

to one.

The Electron Distribution in CO and 002
The contours of the total electron density in CO are shown

in Fig. 5, these being obtained by summing the squares of the occupied
orbitals uo, s0, tc,nx and ﬁy. A similar diagram was constructed for
CO,, based on Mulligan's calculations (ref.5 ) of the occupied orbitals,
in order to find out what modification was made in the CO distribution
by the removal of an oxygen atom. A comparison of the electron density
for CO and CO2 as integrated over plénes through points on the nuclear
axis is given in fig. 6. It appears that the main effect is on the lone
pair side of the carbon atom, the distribution between the carbon and
oxygen not being greatly changed. Whereas the distribution round the

carbon dioxide is, of course, symmetrical, that in carbon monoxide pro-

jects out slightly on the remote side of the bond.

TABLE IT.- MOLECULAR ORBITALS OF T SYMMETRY

‘molecular Tep ) p.) 7 | ‘energy(ev) observed
orbital D T energy(eV)
. 0.8145 0.4162 -15.969 -16.578
:r; 0.631 -0.9425 7.245

This no doubt is the major factor in contributing to the dipole moment

of the molecule. It means also that the molecule is electron-rich in
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F16. 4.—A =-bonding molecular orbital of CO.

8 ¢ o -
F1G6. 6.—The charge density at points along the nuclear axes for CO and CO;. (The
full line curve shows the charge distribution of the outer valence shell electrons of CO3;
the dotted line curve shows the charge distribution of the outer valence shell electrons
of CO.)



that region and so is likely to be attracted to electronphilic groups.
This may facilitate attachment to other molecules and be a primary step

in the formation of complexes as in the carbonyl compounds.

Electronic Structure of BE

This calculation presents the SCF LCAO MO treatment of the BH
molecule ( vef. 16 ) in which no approximations excepting those in-
herent in the theory have been applied. Two different treatments, A
and B, have been carried out to compute the wave function, ilonization
potentials, total energy, binding energy, and the dipole moment of BH.

In one of the treatments, called A, the interactions of all the electrons
have been included explicitly. In the second treatment, called B, the
inner shell — outer shell mixing is neglected but all the orbitals are
made orthogonal to one another and to the inner shells. This is done to
find 'how far the neglect of inner shell — outer shell mixing affects the
results of the calculation. For if this mixing can be neglected, the
eigenvector problem becomes simpler and the evaluation of some of the
integrals is also not required.

The wave functions of the BH molecule, calculated by both the treat-
ments, are further utilized to calculate the total energy, binding energy,
dipole moment, and ionization potentials of the molecule. All the inte-
grals used in these calculations have been computed at the observed equili-
brium internuclear separation, 1.2325 X (or 2.329 atomic units), of BH.

The electron distribution analysis, suggested by Mulliken, has also
been carried out to get intimate insight into the distribution of charges
around and between the nuclei, and to get such information as the degree

of hybridization, and the bonding or antibonding nature of MO's.
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Atomic Orbitals and LCAO MO's of BH
The molecular orbitals of BH are built up from the Slater AO's. The"
notation b, s, and z is adopted for the 1s, 2s, and 2pz AO's of boron;

h denotes the 1s AO of hydrogen. The Epz AQ is directed along the

' internuclear axis having the boron nucleus as the origin, and the

positive z direction pointing toward the hydrogen nucleus.

The atomic orbitals on each atom are normalized and mutually ortho-
gonal except that the nodeless 2s A0 is not orthogonal to ls. The
orthogonal 2s A0 is, therefore, formed from the 1s and 2s AO's of boron.
These normalized AO's are then orthogonal to all the orbitals of the
same atom.

On inserting the necessary integrals the matrices S and H were
determined for both the treatments, A and B. The elements of the G
matrix depend on the undetermined coefficients a; and contaln contribu-
tions from all the occupied orbitals of the closed-shell ground state.
For BH, these orbitals are here denoted by 95 95 and 03.

The self-consistent calculations, A and B, were performed using pro-
grams described before. After the self-consistency was obtained the
eigenvectors Ei and the eigenvalues ei gave the LCAO coefficients and
the LCAO orbital energies which are given in tableIII(a)for treatment A

and in tableITI(b)for treatment B.



TABLE ITZI (a)

Energy
LCAO MO's *¥% values in
atomic units
o, | 1.000 4(p)+0.017 7(s)+0.006 2(z)-0.007 1(h) -7.699 7
o,|-0.048 3(p)+0.558 3(s)+0.217 1(z)+0.481 L4(h) -0.646 6
o5|-0.027 6(b)-0.799 9(s)+0.552 9(z)+0.446 6(nh) -0.346 8
Unoccupiled orbibtals
5 -0.103 0(b)-0.906 4(s)-1.145 9(z)+1.422 2(h) 0.467 1
TABLE IIX (D)
ol 1.0 -7.696 3
a,| =0.037 0(b)+0.560 6(s)+0.216 9(2)+0.479 5(h) -0.6L7 7
oy ~-0.03k4 6(b)-0.799 5(s)+0.552 5(z)+0.448 5(n) -0.346 8
Unoccupied orbitals
p -0.109 6(b)-0.905 5(s)-1.146 1(z)+1.422 3(n) 0.466 7

*¥¥%A11 the MO's in tableTXI(a)andIII{b)satisfy the orthonormality condition.

The Calculation of the Dipole Moment of BH

The dipole moment was determined by finding the center of the charge

for each molecular orbital using the well-known formula

= 2
Z =k/\¢iZ¢idT/¢i aT

()
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The integrals were evaluated by using the formulas given by Sahni (ref.6).
The dipole moment was actually computed from both the origins. The value
of the dipole moment was found to be 0.389 qu~(0.989 D) for each of the

treatments, A and B.

TABLE IV.- COMPARTISON OF CALCULATED AND OBSERVED TOTAL ENERGIES

| ratio of computed o
to observed /o
total energy molecular energy error
Calculation A -681.8 ev 0.992h 0.76
Calculation B -681.7 ev 0.9923 0.77
Observed value* -687.0 ev

*The observed value was cobtained by adding the energy values of the
separate atoms and the binding energy. The experimental values for the
energies of the atoms were taken from "Atom Energy Levels" 1949, published
by the U.S.Dept. of Commerce, National Bureau of Standards.

The Total Energy of the BH Molecule

The total energy was calculated by using the formula

%aZB
E = z (Enn + Hnn) +z e (45)
ap
n
where Enn is the sum of the orbital energies of the occupied orbitals,
and
Z
3 1 Zboron hydrogen (46)
H =114t (5L - - ¢ aT
nn n\ 2 T n

boron rhydrogen

The total energies for both the treatments, A and B, are compared in

table IV.



The Binding Energy of the BH Molecule
For the comparison of the observed binding energy with the calculated
one, we have calculated the energy of the boron atom, using the same
Slater AQ's as used for the calculation of the energy value of BH. The
total energy for boron was found to be
E = -666.4 electron volts.
The calculated binding energy of the BH molecule is given for both the

calculations A and B, together with the experimental value, in table V.

TABLE V. -~ CALCULATED AND OBSERVED BINDING
ENERGIES IN ELECTRON VOLTS

Calculation A Calculation B Experimental®

L Energy
BH -681.8 ev -681.7 ev
B -666.4 ev -666.4 ev
H - 13.6 ev - 13.6 ev
BH-B-H - 1.8 ev - 1.7 ev -2.6 ev
= binding energy
| A S

*Gaydon Dissociation Energies (Chapman and Hall, Ltd., London,
1947), p. 205. Gaydon gives the maximum value of the binding energy
as -3.44k ev. He says the value is probably much lower than this and
recomends a value of -(3.0%0.4) ev.
Blectron Distribution Analysis
If a normalized MO ¢ of a diatomic molecule is written as a linear

combination of normalized AO's Xr and Xs of the two respective atoms

k and 1,

Vo= Crxr * CsXs

(47)
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then the atomic population for atoms k and 1 is given by the following

equations)

and

respectively:

N02 + NC_C S
T rsr

NCZ + NC.C S
S r s r

S

S

)
where Srs is the overlap integral\/ xTdeT, N is the number of electrons

in each MO, Cr and CS are the LCAO coefficients.

is given by 2NC C_S

r s rs’

The overlap population

The atomic population N(i,x) thus calculated is given in table VI.

TABLE VI.- AO POPULATION N(i,x) IN BH

N(i,b) N(ijé) kN(i;z)
oy 2.0006 o.oooé 0.0000
9, 0.0010 0.9252 0.2032
oy -0.000k4 0.8786 0.8686
subtotals | 2.0012 1.8043 1.0718

N(i,;)
~0.0011
0.8706
0.2532

1.1227

" n(1)

2.0000
2.0000

2.0000

6.0000

S - p hybridization is 9.78%/0

Tonized and Execited States of N2 Molecule

Atomic Orbitals and LCAO MO's

For the construction of LCAO MO's of different states of l\T2

(ref.17) the Slater AO's were used.



The atomic orbitals of each atom are normalized and mutually
orthogonal to all the orbitals of the same atom. The notation n, s,
Z, X, y is adopted for the nitrogen 1ls, 2s, Epz, 2px, and. 2py orbitals
with n', s*, z', x', y' for the corresponding orbitals of the second
nitrogen atom. The 2pz orbitals are directed along the internuclear

axis with the positive Z-directions towards each other.

Symmetry Orbitals
From the 10 atomic orbitals 10 molecular orbitals were formed.
The LCAO MO's were chosen so that they belonged in sets to irreducible
representations of the symmetry group of NE' To obtain the proper
symmetry for these MO's, it was convenient to introduce symmetry orbitals.

The symmetry orbitals of N, were obtained from the atomic orbitals by the

2

following transformation

g=Ux (50)
where 0 represents symmetry orbitals
% represents atomic orbitals
and U 1is a real orthogenal matrix.
The resulting symmetry orbitals and the irreducible representations

of the symmetry group Dmllto which they belong are given in table VII.

It should be noted that the symmetry orbitals are not normalized.
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TABLE VII.- SYMMETRY ORBITALS OF N2

Symmetry
species

o)
g

[¢)
u

1 :
oy 1s—2(n+n )

Y '
oy 2s~2(s+s )

o 2p=%(z+z’)

At
cu 18—2(n n )

—-J—_- t
Gu 2s—2(s-s )

o 2p=x(z-z")

There are three og, three O two ﬂu and two ﬂg symmetry orbitals. By

taking linear combinations of these orbitals, a like number of molecular

orbitals of the same symmetry was formed.

the symmetry orbitals Oh by the transformation

q!i = z b:‘anyn
n

which reduces to

and

ldg = bll Gg
Eog = b21 Gg
3Gg = b3l Gg
lcu = blm Gu
Qou = b54 o,
30u = b64 ®u

+ bl2

1s + b32

1s +

1s

1s +

O 28 + D
g

c2s +D
g

33

ﬂu and ng each belong to a one-membered class.

34

a
g

These MO's were related to

(51)

13 %g 2P,

b22 GgES + b23 Cg 2pz

2pz

b45 o, 25 + b46 o, 2pZ
+ b55 o, 2s + b56 S, 2pZ

b65 Ou 2s + b66 Gu Epz

The LCAQ coefficients for



such a class are completely determined by the normalization condition;

thus in the present case the m MO's are uniquely determined.

Determination of LCAO MO's

The LCAQO MO's of the following states of N, were constructed by

2

assigning the electrons to the orbitals in the manner given in table VIITI.

Using Tables of Molecular Integrals described before, S, H and G matrices

b
were constructed. Two different treatments were carried out to obtain
the dx or B matrix. In one of the treatments called the generalized

treatment, the J _ and K& T P
pa oo}

elements of the matrix were calculated
using equations (28a) and (28b). In the second treatment called the
restricted treatment, the a; for the B orbitals were taken to be the
same as those for the & orbitals to calculate the_gbq andngqé or B for

E? or B matrix. The LCAO MO's and orbitals energies were then calculated

using program described above.
Observed equilibrium

1. Ground State Internuclear distances
X‘lzg 1.094 A
2. TJIonized States (N;)
xe,_-_;' 1.116 A
Bez:’ 1.075 A
3. Excited States
B 5ng 1.2123 A
¢ 3x 1.1482 A
u
4, TFExcited States
3
AT 1.293 A
z:u
1 3z/——
& o (1.28 A)
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+ [07

X 22'g
5)
+ 04

B Ezu
3]
a

B 3ﬁg
B
(04

C 3“u
34
(04

+

A 3Zu
B
04
1,32:;
B
(04

.l.-

X l}:g
B

TABLE VIIT.- OCCUPIED LCAO MO's OF

DIFFERENT STATES OF N2

(Generalized Treatment)

g g g u u u u
X X X X X X X
< X -——— X X X X
X X X ) X - Xg ) ;{f i }_{
X X X X - X X
X X X X ) X X 7 X
X p:s - B X__, —X X X .
X X X X X Xﬁ; X
pe X X X —-_——— X X
X X X X );—L ; X
X X X X X ——— X
X X XMA ;" X X p:4
X X X X X X ———
X X X X i} X X - X_
X X X X X X X




The Total Energy of Different States of N2
The total energy for each of the states was calculated by using

the equation

7 Z
E=1/2 Zn(Enn + Hnn) +1/2 zm(Emm + Hmm) +O; %ozi (52)
B

Enn is the sum of the orbital energies of the orbitals occupied

by o electrons,and

Z 7
n = fi (a2 7 - REREL.

n
=Z 25 Bn; hij (53)
i3
or
YEL =) n (Faa) (54)
n ij

Emm and Hmm have the same meaning for the orbitals occupied by B
electrons, as Enn and Hnn for the orbitals occupied by o electrons.

The calculated total energies for the X%Eg'and B%:i%ionized states
of NZ are given in table IX(a). The difference between the calculated
energies of the ionized states and that of the ground state XEEg of N2
are given in table IX(b) along with the experimental ionization potentials
(ref.18) and the ionization energies obtained from the calculation of the
ground state (x‘z%+) of N, Molecule.

The energy of an excited state is calculated by finding the differ-
ence between the energy of the excited orbitals and the energy of the original
orbital, from which the electron is excited, of the ground state. The ener-
gies of the excited states Csﬁ 3

, B xt_ thus calculated, are given in table X
u 8
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along with the experimental values (ref.18) and the energies of A3££+

and l’%ﬂ%_ are given in table XI, along with the experimental values

(ref.22).
* X; + 2+
TABLE IX(a).- TOTAL ENERGIES* OF X3~ x5 AND
g7 &
%+ STATES OF N
B )
u
s T e 2_F T
Zg 3 B Zu ) X,ng B ]
Restricted | -108.5T71 -108.8261 -108.0416
Treatment
Generalized |-108.571 -107.8262 -108.0507
Treatment

* In atomic units (1 atomic unit = 27.204 e.v.)

TABLE IX(b).- IONIZATION POTENTIALS

OF X Z;,B 25_1‘.1" STATES OF N

2
E a .
groun 10RLS Calculation from the Experimental
Restricted | Generalized ground. state wave values
Treatment Treatment ~ funection
o,
B tu -20.267 e.v.| -20.267 e.v. -19.868 e.v. -18.72 e.v.
+ ~-14.399 e.v.| -~14.154 e.v. -14.807 e.v. -15.602 e.v,




3

TABLE X.- EXCITATION ENERGIES OF C ﬂu AND
B3n STATES OF N
g 2
Calculations from the
wave function of Experimental
C3ﬁ and B3ﬂ States values
u g
(Generalized) | (Restricted)
C 3n
u 10.958 e.v. 10.976 e.v. 11.049 e.v.
B 3ng 7.306 e.v. 7.131 e.v. 7.390 e.v.
. - U S .
TABLE XTI.- EXCITATION ENERGIES OF
L 4 1;3-
A gu and :u STATES OF NE
Calculations from the wave Experimental
function of values
+ )
A 3Z and 1’3Z states
u u
Generalized |Restricted
Se t
A Zu 6.953 e.v.| T.056 e.v. 6.223 e.v.
1,32—'
T 8.150 e.v. 8.255 e.v. T.437 e.v.

Discussion of the Results
The results of the above calculation of the different states of N2
show that the LCAO MO method gives the results of the same order of
accuracy for the excited and ionized states as that for the ground state
of molecules. It is further apparent from the calculations that both the

generalized and restricted treatments give nearly the same results for
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both the ionized and excited states. ©Since the calculations have been
carried out for both g and u states, it appears the method holds for the
states (ground, ionized and excited states) of molecules which can be
represented by a single determinant. This is the first calculation
where the quantum mechanical treatment of ionized and excited states has
been carried out without using any approximations, within the rigorous
framework of the LCAO SCF MO theory. It i1s hoped that this calculation
will form the basis of the much needed work on the lonized and excited

states of molecules.



APPENDIX I
THE DIAGONALIZATION OF MATRICES
The iteration-rotation method for the diagonalization of a matrix
is based on the fact, that by an orthogonal transformation from variables

x, y to variables x', y', which can be described in the forms

x! cos © sin © X

y! - sin © cos @ y

One can express the quadratic form

ax2 + 2hxy + by2 =0
as a sum of squares

MZ L2 -0 .

© is chosen such that

tan 20 = 2h (a - b)_l
where h 1is the largest off-diagonal element, a and b being the corres-
ponding diagonal elements.

For example, if one takes the matrix,

A = 2.879 -0.841 -0.148 0.506
-0.841 3.369 -0.111 0.380
-0.148 -0.111 1.216 -0. 740
0.506 0.380 -0.7k40 3.536
h = -0.8k41,
tan 20 = -2 x 0.841

2.879 - 3.369,

(55)

(56)

(57)

(58)
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cos © sin © 0 0

and TO =] -sin @ cos © 0 0
0 0 1 0

0] 0 0 1

then the element in TslA T, (:Al) corresponding to -0.841 will be zero.

The matrix, Al’ thus obtained, is again subjected to a similar
operation Tél Al T¢ for its largest off-diagonal element h.
When all the off-diagonal elements are reduced to zero, or to

negligibly small values, the final matrix will take the following

form

A T = | k.005 0.0 0.0 0.0

v n-1 ¢
0.0 i.000 0.0 0.0
0.0 0.0 1.005 0.0
0.0 0.0 0.0 1.990

suggesting that the characteristic roots, which are invariant under the
above orthogonal transformations are approximately 4.005, L4.000, 1.005

and. 1.990.
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APPENDIX II
BQUIVALENT FORMS OF MO EQUATIONS
The molecular orbital equations
(E'€§)§i=o
can be obtained in the following equivalent forms,
(E - €§) a;

1

1

(F-el"" LT a,

v (rretlen) T
st Ll/e(L-l/eT g ool L-l/e_eI)L+1/2T
where L and T are the diagonal and unit matrices.
Equations (61) are obtained from equations (60) by replacing S by
its equivalent
S==TlLT
where L is the diagonal matrix obtained from S by the iteration-rotation
process described in Appendix I.

1
The matrix B (= L'l/2 T F 7L L-l/2 - €I) of equations (63) is also

diagonalized by the iteration-rotation process using the transformation

-1
Y

(Koo iy

y=238
The elements of the diagonal matrix B, thus obtained, will give the

ionization potentials (refer to Appendix I) while the vectors

L‘l/2 TY

give the coefficients for the LCAO MO's.

(59)

(60)
(61)

(62)
(63)

(64)

(65)
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APPENDIX IIT

SAMPLE PAGE FROM TABLE I(b) - SUPPLEMENT I
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Y-4E608E6°%Y

Y=420L991 ¢

¥=¢960600¢2

h=¢60669¢°1

G=4E626T16°%L | G=6989826°%" | G~40T1HESO®E | G=~¢824488°T 6%6¢

8%62 W=S9LLLNO0®G | H=4LS9TNC%E | #-/GE6190°7 w-¢EBET0EPT |G~9GL0091%8 | 5~4089880°%G | 6=4G288GT"E | G=v.LE656°T 8%62
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062 W=SE6ETIGOS | H-dLHGLIGE | W=¥EGGLBZPZ H-$TGESGHPT | G=9TE9B6T1%6 | G-926228L°G | G~¢EvTBI9%E | G=9EEESG2°2 %62l
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%62 P-¢0LBIUBPS | W= TGHELBOE | 9=0,1824%°2 #-¢99928G°T | 9~9LEEF00°T | G~$EHREGE®Y | G=4GEHS00% Y G=t4y90216%2 1%62
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6%8¢ ¥=$9TLTIGT 9 | 7=¢6EFTZ0Y | #=958GH09°Z H~¢G99ELIOT | ¥=4GGHB90°T | G=9ZL9EBL®Y | G-4642.82°%h G=¢£12669°%C 6%8¢
8*82 W=~48CBLRE®Y | 7= 9T6TT1%Y | #-8/0€L9%2 4~¢80T1ZLOT | #=~¢LE600T"T | G-$BGHE00,L | GuonizGENT Y G=¢296L6L%C 88l
L8 W=82LHLEY9 | W-¢T9061C% | Y= TLECYL®Z %=¢G6869L*L | y=490H9ET*T | G-988TITEZ", S—¢4LE88G%Y | G=+£Z2c006°C L*8e
98¢ =¢9T20L5%9 | 7~¢GLELZE®Y | #=42T5GT18*Z 9~4G90028°T | #=¢16889L°1 | G-4€6859%°L | G=46G.04i%% G=49Z2%900°%¢ 9°8¢
G*8e W=69ZT9TL*G | #-¢691924%h | %=6055688°2 H-¢LGITLBYT | ¥4 GZHH0Z*T | G=421280L%L G=0.09016%% | G=¢QIH9T1T%¢E s8¢
hAd T4 W-¢LL2698°%9 | 7-tEO0GEEG Y | H=0ZEGG9692 H~¢QTLHZ6%T | 4~9QC0THZ°1 | G=S96E866°L | G=460T080°G G=¢91%Cel ¢ 08¢
(24 14 F=SLELLTOML | 7~%6EWER9°Y | ¥=¢ZTGEHDPE 4~$9926L6%T | 9=¢99.8L2°T | 5-4269912°8 | G~$094G52*¢ G=¢06589C°¢C €8¢
Z*8e W=$CHGELTOL | 7=6E09SL®Y | #=62HGEZI®E H=-$89EGE0%Z | 4=¢ EOLTE®T | G=%0LEEEH*E | G~60989EH 5 G=¢9801.L%*C 2°8¢
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